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Abstract: In this paper we consider the phase structure of “orientifold” gauge theories

— obtained from unitary supersymmetric gauge theories by replacing adjoint Majorana

fermions by Dirac fermions in the symmetric or anti-symmetric representations — in finite

volume S
3 ×S

1. If the radius of the S
3 is small the calculations can be performed at weak

coupling for any value of the S
1 radius. We demonstrate that there is a confinement/de-

confining type of phase transition even when the fermions have periodic (non-thermal)

boundary conditions around S
1. At small radius of S

1, the theory is in a phase where

charge conjugation and large non-periodic gauge transformation are spontaneously broken.

But for large radius of S
1 the phase preseves these symmetries just as in the related

supersymmetric theory.
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“Orientifold” gauge theories have been the subject of much interest due to the possi-

bility of large N equivalence [1, 2]. The sobriquet “orientifold” comes from string theory,

but field theorists may think of it as describing a gauge theory which has the same field

content as a supersymmetric gauge theory but where one replaces the adjoint Majorana

fermions by Dirac fermions transforming in either the anti-symmetric or symmetric repre-

sentation.1 Since the dimensions of the anti-symmetric and symmetric representations are
1
2N(N ±1) and that of the adjoint is N2, both theories have the same number of fermionic

degrees-of-freedom in the large N limit. The idea is that certain observables of these theo-

ries will be equal to those of the original supersymmetric theory in the large N limit [3 – 6].

This is an intriguing possibility, but it is not easy to test the hypothesis because in R
4

these theories are strongly coupled confining gauge theories. However, there are ways of

rendering a strongly coupled theory weakly coupled and in the weakly coupled regime can

can attempt a test of the hypothesis. The first such proposal [7] considered the theory on

T
3 × R and the conclusion was that for small tori needed to ensure weak coupling, large

N equivalence was not manifest. A different kind of philosophy was proposed in [8] who

considered the theory on R
3×S

1 with either periodic or anti-periodic (thermal) boundary

conditions on the fermions. When the size of the circle (which we denote by β) is small,

then the Wilson loop of the gauge field around the circle can get a large VEV ∼ β−1 which

breaks the gauge group U(N) → U(1)N at an energy scale much greater than ΛQCD and

so renders the theory weakly-coupled. An effective action for the eigenvalues of the Wilson

loop, or Polyakov loop in the thermal case,

U = Tr exp i

∮

S
1

A =

N
∑

j=1

eiθj , (1)

can be computed in this regime and minimized in order to find the ground state of the

theory. The simplest kind of orientifold gauge theory involves in addition to the gauge

field, a Dirac fermion transforming in the anti-symmetric or symmetric representation of

the gauge group. The resulting ground state depends crucially on whether the boundary

conditions on the fermions are periodic or anti-periodic. In the periodic case, the ground

state has all the eigenvalues θi sitting at π/2 or all at 3π/2 and the so there is spontaneous

symmetry breaking of the Z2 large gauge transformations which take θi → θi + π (to

be described more fully later) and also of charge conjugation which takes U → U∗, or

θi → −θi.
2 For thermal boundary conditions, the ground state is either θi = 0 or π and

so, although Z2 is also broken, charge conjugation is preserved.

On the contrary, in the related “sister” theory, in this case N = 1 Yang-Mills, with pe-

riodic boundary conditions for the fermions, the θi are always uniformly distributed around

the circle and charge conjugation is always unbroken. This shows conclusively that large

N equivalence is not valid on R
3 × S

1 at small radius with periodic boundary conditions

on the fermions. Unfortunately, one cannot say anything about large radius (and therefore

1We are assuming a U(N) or SU(N) gauge group.
2In actual fact when all the eigenvalues are equal, the theory is not strictly speaking weakly coupled

since there is no Higgs mechanism.
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R
4) where the theory becomes strongly coupled using this approach. The problem is that

there may be a phase transition in the orientifold theory for some critical radius for which

Z2 and charge conjugation are restored. Experience suggests that these kind of phase

transitions do indeed occur in the thermal case with anti-periodic boundary conditions for

the fermions. The phase transition in question is the confinement/de-confinement transi-

tion where the de-confined phase occurs at high temperature (small radius) and involves

spontaneous breaking of large non-periodic gauge transformations and the generation of a

condensate 〈U〉 6= 0. However, with periodic boundary conditions in the sister supersym-

metric theory, this symmetry is preserved and the confinement/de-confinement transition

does not occur. For the orientifold theory, however, we simply do not know. In the case

of thermal (anti-periodic) boundary conditions on the fermions, [8] shows that at high

temperature (small radius) both the orientifold and original theories break their group of

large non-periodic gauge transformations, Z2 and U(1), respectively. The difference is that

charge conjugation is preserved in both cases and so large N equivalence may be valid here.

There is a way of studying these kinds of phase transitions whilst remaining in a weakly-

coupled regime. Namely, we can investigate the theory on S
3 × S

1. In this situation, we

can keep the radius of S
3, R ≪ 1/ΛQCD, and then study the physics as a function of the

ratio β/R for all values of β. Of course, one can, at the end of the day, argue that there

are additional phase transitions as R varies but nevertheless the universality classes of the

transitions seen at small R seem to match the expected transitions in the strongly coupled

theories on R
3 at finite temperature. Our main conclusion is that in the orientifold case,

there is a phase transition even with periodic boundary conditions.

We now turn to the calculations and, following the beautiful paper [9] whose results

and notion we use extensively, we compute a Wilsonian effective action for the gauge theory

on S
3 × S

1 to the one loop order. The only zero modes belong to the constant mode of

A0, the gauge field component around S
1:

α =
1

Vol S3 × S
1

∫

S
3×S

1

A0 . (2)

We can use global gauge transformation to diagonalize α:

α = β−1diag(θi) . (3)

The θi are angular variables since there are large gauge transformations (but periodic

around S
1) that take θi → θi + 2π. Physically, the gauge invariant quantity is the Wilson

loop (1). On top of this there are additional large gauge transformations that are only

periodic on S
1 up to an element of the centre Γ of the gauge group a quantity that

depends on the matter content. These large gauge transformation form a group themselves

isomorphic to Γ and we will refer to it as Γ̃. If there is only adjoint matter and the gauge

group is SU(N) then Γ̃ = ZN , while for gauge group U(N) we have Γ̃ = U(1). In the

presence of matter the centre and hence Γ̃ can be a smaller subgroup of ZN or U(1),

respectively. If there were only adjoint matter then in the SU(N) case these non-periodic

large gauge transformations take θi → θi + 2π/N and so transform U by an N -th root of

unity. In the U(N) case, the transformations are θi → θi+a for 0 ≤ a < 2π. Hence, strictly
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speaking, the gauge invariant observables are, for example, |U |. Spontaneous symmetry

breaking of this Γ̃ symmetry occurs when 〈|U |〉 6= 0.

The radiative corrections at the one loop level are obtained by taking the constant

mode (3) as a background VEV and integrating out all the massive modes of the fields.

The this end, we shift A0 → A0 + α and then the one-loop contribution involves the

logarithm of the resulting functional determinants and which depend on α in a non-trivial

way.

The detailed calculations have been performed in [9] and so our discussion will be brief.

Each field is expanded in terms of harmonics on S
3 × S

1 and keeping only the quadratic

terms and integrating out the fields, a typical contribution to the effective action is of the

form

±1
2Tr log(−D̃2

0 − ∆) , (4)

the ±1 being for bosons and fermions, respectively. In the above, D̃0 = ∂0 + iα and so

includes the coupling to the VEV, and ∆ is the Laplacian on S
3 appropriate to the tensorial

nature of the field on S
3. The background VEV α acts as a generator of the Lie algebra

of SU(N) in the representation of the gauge group appropriate to the field and the trace

includes a trace over that representation of the gauge group. The eigenvalues of ∂0 are

simply 2πin/β, n ∈ Z, while the eigenvectors of the Laplacian on S
3 are labelled by the

angular momentum ℓ:

∆ψℓ = −ε2
ℓψℓ , (5)

and we denote their degeneracy as dℓ. The data εℓ and dℓ depend on the field type as we

list below.

i) Scalars. There are two kinds of scalar fields which have the same set of eigenvectors.

Firstly, for conformally coupled scalars3 we have εℓ = R−1(ℓ+1). On the other hand,

for minimally coupled scalars εℓ = R−1
√

ℓ(ℓ + 2). Both types have a degeneracy

dℓ = (ℓ + 1)2 with ℓ ≥ 0.

ii) Spinors. For 2-component complex spinors,4 we have εℓ = R−1(ℓ + 1/2) and dℓ =

2ℓ(ℓ + 1/2) with ℓ > 0.

iii) Vectors. Here the situation is more complicated. A vector field Vi can be decom-

posed into the image and the kernel of the covariant derivative: Vi = ∇iχ + Bi,

with ∇iBi = 0. The eigenvectors for the closed part, Bi, have εℓ = R−1(ℓ + 1)

and dℓ = 2ℓ(ℓ + 2) with ℓ > 0. On the other hand, the exact part ∇iχ has

εℓ = R−1
√

ℓ(ℓ + 2) with degeneracy dℓ = (ℓ + 1)2 but with ℓ > 0 only.

Notice that both spinors and vectors have no zero (ℓ = 0) modes on S
3. This is why

in a pure gauge theory the only field with a zero mode is A0 which is a scalar on S
3.

3These have a mass term involving the Ricci scalar of the manifold, in this case simply R−1.
4This representation is actually reducible on S

3 into two real 2-component spinors but corresponds to a

Majorana spinor on S
3 × S

1.
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It is a standard calculation using the identity
∏∞

n=1(1 + x2/n2) = sinh(πx)/(πx) to

show that (4) is equal, up to an infinite additive constant, to

∞
∑

ℓ=0

dℓ

{

βεℓ −
∞

∑

n=1

1

n
e−nβεℓTr cos(βα)

}

. (6)

The first term here involves the Casimir energy and since it is independent of α will play

no rôle in our story and we will subsequently drop it.

The sums over the angular momentum in (6) can be performed explicitly for each of

the tensor types on S
3. Firstly for conformally coupled scalars

zs(x) =
∞
∑

ℓ=0

(ℓ + 1)2x−(ℓ+1) =
x(1 + x)

(1 − x)3
, (7)

whilst for spinors

zf (x) = 2
∞

∑

ℓ=1

ℓ(ℓ + 1/2)x−(ℓ+1/2) =
4x3/2

(1 − x)3
, (8)

and finally for closed vectors

zv(x) = 2

∞
∑

ℓ=1

ℓ(ℓ + 2)x−(ℓ+1) =
x(6x − 2x2)

(1 − x)3
, (9)

where x = e−β/R. We will not need the sums for minimally coupled scalars and exact

vectors.

Before we consider theories with matter fields, let us first consider pure Yang-Mills

where we have to face the issue of gauge fixing. One can follow the non-covariant gauge

fixing in [9], however it is perhaps simpler to use a conventional Faddeev-Popov procedure

and choose Feynman gauge. The gauge field Aµ includes A0 which transforms as a min-

imally coupled scalar on S
3, while Ai = Bi + ∇iχ. The ghosts transform as minimally

coupled scalars on S
3 but contribute with a −1 in (4) since they are Grassmann valued.

The ℓ > 0 contributions from A0, ∇iχ and the ghosts all cancel leaving only a net con-

tribution from the ℓ = 0 modes (since exact vector do not have an ℓ = 0 mode) of the

form
∞
∑

n=1

1

n
Tr cos(nβα) =

∞
∑

n=1

1

n

∞
∑

ij=1

cos n(θi − θj) . (10)

This part is precisely the exponentiation of the Jacobian that converts the integrals over

the θi into an integral over the unitary matrix U = diag(eiθi):

∫ N
∏

i=1

dθi exp
{

∞
∑

n=1

1

n

N
∑

ij=1

cos n(θi − θj)
}

∝

∫ N
∏

i=1

dθi

∏

i<j

sin2
(θi − θj

2

)

=

∫

dU . (11)

However, we will leave the Jacobian in the exponent since it must be considered as part of

the effective action for the eigenvalues.
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The remaining modes are the closed vectors Bi and these contribute as in (6) with

dℓ = 2ℓ(ℓ + 2) and εℓ = R−1(ℓ + 1). Using the sum (9) and including the Jacobian term

in (10), the full effective action is simply

S(θi) =

∞
∑

n=1

1

n

(

1 − zv(x
n)

)

N
∑

ij=1

cos n(θi − θj) . (12)

The phase structure as a function of the temperature is determined by minimizing S(θi).

As the temperature changes from low to high, the parameter x varies from 0 to 1. At

low temperatures, the pre-factor of the cosine is positive and the eigenvalues effectively

repel one another and for large N form a uniform distribution around the circle. As x

increases the factor 1 − zv(x) changes sign at some critical temperature T = Tc which can

be found by solving zv(e
−1/RTc) = 1. Beyond this the eigenvalues attract each other and in

the limit of very high temperatures the distribution of eigenvalues becomes a delta function

at some arbitrary point θ0 around the circle. Notice that the transition is driven by the

n = 1 term in (12). Of course in a situation with N finite there is no genuine symmetry

breaking in finite volume and one should integrate over the modulus θ0. However, if we

take the large N limit, then a sharp phase transition does indeed occur at Tc and the high

temperature phase spontaneously breaks the Γ̃ symmetry.5 The order parameter is the

expectation value of the Wilson/Polyakov loop with 〈U〉 = 0 in the low temperature phase

and 〈U〉 = Neiθ0 6= 0 in the high temperature phase. This pattern of symmetry breaking

is precisely what one expects for the confinement/de-confinement phase transition in the

strongly-coupled theory on R
3. Another order parameter is the effective action itself. At

low temperatures S = 0 while above the transition S = O(N2) as one would expect if the

colour degrees-of-freedom where being de-confined.

Another way to analyze the effective action in the large N limit is to represent the

distribution of the eigenvalues θi by a density ρ(θ) normalized so that
∫ 2π
0 dθ ρ(θ) = 1 and

replace
∑N

i=1 f(θi) → N
∫ 2π
0 dθ ρ(θ)f(θ). To this end, it is useful to define the Fourier

components

ρ+
n =

∫ 2π

0
dθ ρ(θ) cos(nθ) , ρ−n =

∫ 2π

0
dθ ρ(θ) sin(nθ) , (13)

with ρ+
0 = 1/(2π), in terms of which the effective action is

S(ρ±n ) =
N2

2π

∞
∑

n=1

{

V +
n (T )(ρ+

n )2 + V −
n (T )(ρ−n )2

}

, (14)

where, in this case,

V +
n (T ) = V −

n (T ) =
2π

n

(

1 − zv(x
n)

)

. (15)

At low temperature, all the V ±
n (T ) are positive and so ρ±n = 0, n > 0. This means that only

ρ+
0 = 1/(2π) is non-vanishing corresponding to the uniform distribution. As x increases

5This is U(1) in the case of pure Yang-Mills with a U(N) gauge group or if the gauge group is SU(N)

then θ0 = 2πn/N , n ∈ Z , and Γ̃ = ZN .
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V ±
1 (T ) change sign at the critical temperature and at T = Tc the first harmonics can be

non-vanishing corresponding to

ρ(θ) =
1

2π

(

1 + t cos(θ − θ0)
)

(16)

for arbitrary t and θ0. At T = Tc, 0 ≤ t ≤ 1 parameterizes a flat direction. Note that

V ±
n (T ) for n > 1 change sign at a higher temperature and so the transition is determined

solely by V ±
1 (T ). For T > Tc one can show that ρ(θ) develops a gap at θ = θ0 + π

which grows as T increases so that at very high temperatures ρ(θ) = δ(θ − θ0). The order

of the transition turns out to be a rather subtle issue that depends on higher orders in

perturbation theory. Remarkably, the necessary three-loop calculation was performed for

pure Yang-Mills in [10] where it was shown that the transition is first order.

N = 1 Yang-Mills. In this theory, there is a adjoint-valued Majorana (or Weyl) fermion

in addition to the gauge field. Now that the theory has fermions there are two possibilities

for the boundary conditions of the fermions around the circle. In the thermal case, the

fermions have anti-periodic boundary conditions and supersymmetry is broken while the

other possibility is to have supersymmetry preserving periodic boundary conditions. The

effective action is

S(θi) =
∞
∑

n=1

1

n

(

1 − zv(x
n) + σnzf (xn)

)

N
∑

ij=1

cos n(θi − θj) . (17)

where6

σn =

{

(−1)n thermal (anti-periodic)

1 periodic .
(18)

Or one can write it as (14) with

V +
n (T ) = V −

n (T ) =
2π

n

(

1 − zv(x
n) + σnzf (xn)

)

. (19)

In this case the behaviour depends crucially on whether we have thermal or periodic

boundary conditions for the fermions. In the thermal case, as T increases V ±
1 (T ) change

when zv(x) + zf (x) = 1 and there is a phase transition of exactly the same kind as in

the pure gauge theory. On the other hand if we choose periodic boundary conditions then

V ±
n (T ) are always positive and no transition occurs. In this case the system is always in

the state with a uniform distribution of eigenvalues.

The orientifold theory. This theory has a Dirac fermion in the anti-symmetric or

symmetric representation7 as well as the gauge field. In this case, with gauge group U(N),

the group of large non-periodic gauge transformations is Γ̃ = Z2.

6This can be derived by shifting the Matsubara frequencies 2πn/β by π/β in the anti-periodic case.
7This is equivalent to having one Weyl in the anti-symmetric and one in its complex conjugate repre-

sentation.
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In the anti-symmetric representation, the eigenvalues of α are θi +θj, i < j, along with

−θi − θj , i < j, for its conjugate.8 The group Γ̃ = Z2 is generated by θi → θi + π. Using

all the formulae above, one finds that the the effective action is9

S(θi) =

∞
∑

n=1

1

n

N
∑

i6=j=1

{

(

1 − zv(x
n)

)

cos n(θi − θj) + σnzf (xn) cos n(θi + θj)
}

, (20)

Before we consider the large N limit, it is quite instructive to consider the case of N = 2.

As in other cases, changes of state are driven solely by the n = 1 terms which in this case

are

S(θi) = 2
(

1 − zv(x)
)

cos(θ1 − θ2) + 2σ1zf (x) cos(θ1 + θ2) + · · · . (21)

It is a simple matter to minimize these n = 1 terms with respect to θ1 and θ2. Notice

that zf (x) is always positive, whereas 1−zv(x) is positive at low temperature and negative

at high temperature. In the thermal case, σ1 = −1 and therefore the low temperature

phase has eigenvalues (π/2, 3π/2). There is a transition at zv(x) + zf (x) = 1 and in the

high temperatures phase one has the two states (0, 0) or (π, π). Of course, since we are in

finite volume we have to sum over the two high temperature states and the Z2 symmetry

is restored. However, below we shall consider the large N limit where there is a genuine

sharp phase transition and symmetry breaking.

Now we turn to the case of periodic boundary conditions for which σ1 = 1. In this

case, at low temperature we have the unique state (0, π) but there is also a transition

when zv(x) + zf (x) = 1. The high temperature phase has two solutions (π/2, π/2) or

(3π/2, 3π/2). The pattern of eigenvalues matches those found for the theory on R
3 × S

1

in [8].

While the finite N case is interesting, in order to have a genuine phase transition we

need to extend the discussion to the large N limit. In this case, we find

V ±
n (T ) =

2π

n

(

1 − zv(x
n) ± σnzf (xn)

)

. (22)

At low temperatures both V ±
n (T ) are positive for both thermal and periodic boundary

conditions. In this case, the ground state consists of a uniform distribution of eigenvalues

ρ(θ) = 1/(2π). As T increases there is a transition at zv(x) + zf (x) = 1 where V +
1 (T )

changes sign, for thermal boundary conditions. This is exactly the same critical temper-

ature as in the N = 1 supersymmetric theory. In this case V −
1 (T ) remains positive. The

situation for periodic boundary conditions is the reverse of this: V −
1 (T ) changes sign and

V +
1 (T ) remains positive. Notice that the critical temperature is the same in both cases.

At the critical temperature the distribution can develop the cos θ harmonic, in the thermal

case, and the sin θ harmonic, in the periodic case. In the high temperature phase the Z2

8In the symmetric representation the eigenvalues include the same but in addition the ones with i = j.

For the most part we shall consider the anti-symmetric representation but at large N the conclusions for

the symmetric representation will be identical.
9Note that we have restricted the sum to i 6= j for the anti-symmetric representation, however, this has

no effect on the terms arising from the gauge field which are independent of the eigenvalues when i = j.
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symmetry θ → θ +π is spontaneously broken with the limiting distributions ρ(θ) = δ(θ) or

δ(θ − π), in the thermal case, and δ(θ − π/2) and δ(θ − 3π/2), in the periodic case. Notice

that in the periodic case, charge conjugation symmetry ρ(θ) → ρ(−θ) is also spontaneously

broken, but this does not occur in the thermal case.

In the periodic case, the two phases match precisely those found in [8] for the theory

on R
3 × S

1 for small radius. However, as the S
1 in our case de-compactifies, we find a

phase transition to the uniform distribution of eigenvalues just as in the sister supersym-

metric theory. This does not prove definitively that such a transition will also occur in the

theory on R
3×S

1 since this is a strongly-coupled theory and perturbative or semi-classical

methods are not valid.

Notice that the same formalism is also applicable to the case of the symmetric repre-

sentation by simply extending the sums in (20) to include the i = j terms. These terms

are sub-leading at large N and so do not affect the conclusions.

The orientifold N = 4 theory. This theory has the same matter content as the N = 4

theory apart from the fact that the four adjoint Majorana fermions are replaced by Dirac

fermions in the symmetric or anti-symmetric representation of the gauge group [12].

For the N = 4 theory which has, in addition to the gauge field 6 conformally coupled

scalars and 4 Majorana fermions all transforming in the adjoint representation of the gauge

group, we have

V +
n (T ) = V −

n (T ) =
2π

n

(

1 − zv(x
n) − 6zs(x

n) + 4σn(x)zf (xn)
)

. (23)

In the thermal case, there is a phase transition when zv(x) + 6zs(x) + 4zf (x) = 1 in the

same universality class as in the pure Yang-Mills case discussed above. In the periodic

case, 1 − zv(x) − 6zs(x) + 4zf (x) is always positive and no phase transition occurs.

For the orientifold version, the fermions come in either the symmetric or anti-symmetric

representation, and in these cases,

V ±
n (T ) =

2π

n

(

1 − zv(x
n) − 6zs(x

n) ± 4σn(x)zf (xn)
)

. (24)

Hence in both the thermal and periodic cases there is a phase transition at zv(x)+6zs(x)+

4zf (x) = 1 in the same universality classes as the orientifold theory described above. So in

the thermal case, in the high temperature case Z2 is spontaneously broken, but not charge

conjugation, whilst in the periodic case both Z2 and charge conjugation are spontaneously

broken.

It would be interesting to relate this weak coupling picture to the gravity dual. For the

N = 4 theory, Witten argued that the phase transition at strong coupling in the thermal

case, should correspond to the Hawking-Page transition between thermal AdS (Euclidean

AdS5 with a periodic identification) and the Euclidean AdS big black hole [11]. The big

black hole describes the de-confined phase at high temperature. Both geometries have a

one cycle on the boundary, however, in the black hole case the cycle is contractable as one

goes into the interior forming a cigar in the bulk geometry. In thermal AdS the one cycle is

not contractable. These features match the fact that in the high temperature phase there
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is a non-vanishing Polyakov loop at weak coupling which in the gravity dual arises from a

string world-sheet that wraps the cigar. For thermal AdS, there is no contractable one cycle

matching the fact that the Polyakov loop vanishes in the low temperature phase. Another

symptom of the fact that the one cycle on the boundary of the black hole is contractable, is

that only fermions with anti-periodic boundary conditions can be supported. Hence there

is no Hawking-Page transition for periodic fermion boundary conditions matching perfectly

with the weak coupling picture.
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